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ABSTRACT
We introduce a map algebra based on a cochain extension of the Lin-
ear Algebraic Representation (LAR), used to efficiently represent
and query geometric and physical information through sparse ma-
trix algebra. LAR, based on standard algebraic topology methods,
supports all incidence structures, including enumerative (images),
decompositive (meshes) and boundary (CAD) representations, is
dimension-independent and not restricted to regular complexes.
This algebraic representation enjoys a neat mathematical format—
being based on chains, the domains of discrete integration, and
cochains, the discrete prototype of differential forms, so naturally
integrating the geometric shape with the supported physical prop-
erties, and provides a mechanism for strongly typed representation
of all physical quantities associated with images. It is easy to show
that k-cochains form a linear vector space over k-cells, which means
that they can used as basic objects in a rich and virtually unlimited
calculus of physical properties.

Index Terms— Map algebra, image information mining,
solid modelling, cochain complex, algebraic topology

1. INTRODUCTION

Computational problems in science and technology must deal
with increasingly complex geometric information and appli-
cations. The complexity of geometric information stems from
dramatic increase in size, diversity, and complexity of geo-
metric data, including digital images, point clouds, bound-
ary schemes, NURBs representations, finite element meshes,
3D medical images. This increasing complexity of geomet-
ric information and applications, and the goals of unification,
scalability, and support of massively parallel distributed com-
puting, strongly push for rethinking the foundations of geo-
metric and topological computing. In particular the emerging
applications from space, nano & bio technology, and medi-
cal 3D, require a novel convergence of shape synthesis and
analysis methods from computer imaging, computer graph-
ics, computer-aided geometric design, with meshing of com-
putational domains and physical simulations.

Objects and relations distributed in time and space are
all cell complexes. Examples: digital images, finite element
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meshes, B-reps of solids, assemblies, networks, and so on,
are all cell complexes of various dimension [1]. Such decom-
positions of space into k-cells (0 ≤ k ≤ d) may generate
k-chain spaces, linear spaces constituted by any combination
of k-cells, where (a) singletons of k-cells give a basis, i.e. a
minimal set of generators, and (b) linear boundary operators
compute the boundary chain of any given chain, by mean of a
single SpMV (sparse matrix-vector) multiplication.

Basically, k-cochains are discrete densities of quantities
contained in the k-cells of a cell complex (such as a digi-
tal image or a finite element mesh), k being the dimension.
The LAR (Linear Algebraic Representation) scheme [1] is
a simple, general and effective representation of (co)chain
complexes [2], based on a CSR (Compressed Sparse Row)
representation [3] for characteristic matrices of linear spaces
of (co)chains. LAR supports all topological incidence struc-
tures, is dimension-independent and not restricted to regular,
i.e., dimensionally uniform complexes. It allows for fast va-
lidity checks of the topology of geometric models, possibly
generated from 3D scanner data or extracted from 3D images,
using only elementary linear algebra, namely, sparse matrix-
vector multiplication. Any query about incidence relations
between chains or cochains of same or different dimensions
are answered by a single SpMV product.

2. LINEAR ALGEBRAIC REPRESENTATION (LAR)

2.1. Cellular Complexes

All geometrical objects considered in this paper are chains
in a cellular complex Λ(X) partitioning a (topological) space
X ⊂ Ed. Informally, a cellular complex is made of basic
building blocks called cells, suitably glued together [4].

More formally, a cellular complex is a Hausdorff spaceX ,
i.e. a topological space in which distinct points have disjoint
neighbourhoods, together with a partition Λ = Λ0∪· · ·∪Λd of
X into open cells (of varying dimension) that satisfies some
additional properties. Some definitions useful in the remain-
der follow.

A compact topological subspace is a convex cell if it is the
set of solutions of affine equalities and inequalities. A face
of a cell is the convex cell obtained by replacing some of the
inequalities by equalities. A facet of a cell is a face defined
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by just one equality. The dimension n of a n-cell is that of
its affine hull, the smallest affine subspace that contains it. A
convex-cell complex or polytopal complex P is a finite union
of convex cells such that: (i) if A is a cell of P , so are the
faces of A; (ii) the intersection of two cells of P is a common
face of each of them. A simplicial (respectively, cuboidal)
complex is a polytopal complex where all cells are simplices
(respectively, cuboids). The dimension of P is the maximal
cell dimension of P . The r-skeleton Pr is the subcomplex
formed by the cells of dimension ≤ r. The 0-skeleton coin-
cides with the set V (P ) of vertices of P .

2.2. LAR definition

The Linear Algebraic Representation (LAR) scheme supports
all topological constructions and queries that arise in typi-
cal cellular decomposition of space (image, mesh, boundary,
etc.). Formally, LAR relies on standard definitions [4, 5]: in
the mod 2 cellular complexes, d-chains are sets of d-cells; the
standard basis of the Z2-linear space Cd of d-chains is pro-
vided by singletons of d-cells; each d-cell is represented by
a map Cd → Z2 C0, i.e. by a row of a binary characteristic
matrix Md. Of course, every d-chain in Cd may be generated
by a (Z2)-linear combination of Md rows. The formulation
may be extended to d-cochains that represent any possible
field over the chains. In this context, the boundary is a lin-
ear operator and the coboundary is its dual. Boundary and
coboundary operators provide the computational tools needed
by the discrete version of the generalized Stokes theorem for
integration of fields over d-dimensional domains [6].

The characteristic matrices of a chain complex, i.e. the
binary matrices that encode the incidence of d-cells with 0-
cells, provide a convenient tool for computing boundary (and
coboundary) operators and answering queries concerning the
topological relations between cells [1]. Characteristic matri-
ces are very sparse for actual chain complexes used in applica-
tions, and can be represented in a standard CSR (Compressed
Sparse Row) format. The product and transposition of CSR
matrices [7, 3], needed to compute the boundary, adjacency
and incidence operators between such linear spaces, are in-
trinsically efficient, since the sparse matrix-vector (SpMV)
multiplication is linear in the size of the (sparse) output.

Fig. 1. Chain and cochain complex as a sequence of linear
spaces of chains (Cd), i.e. domain subsets, and cochains (Cd),
i.e. discrete fields, with linear boundary (∂) and coboundary
(δ) operators, under constraints ∂d−1 ◦ ∂d = δd ◦ δd−1 = 0.

2.3. Chains and cochains

Given a space partition into kd connected d-cells, we are
mainly interested to d-chains, sets of d-cells, members of the
linear space Cd with scalars in Z2 = {0, 1}. Accordingly, the
coordinate representation of a cell λ ∈ Cd is a binary vector
of length kd with only one unit element.

d-Cochains are the elements of the dual space Cd :=
C∗

d = {f : Cd → R} of real-valued linear functions of
chains. By definition, a d-cochain is (a functional representa-
tion of) a discrete field over a cellular d-complex partitioning
a given space. The standard basis of C2 is given by the char-
acteristic functions χi : C2 → R such that χi(λj) = δij , with
δij =1 (i=j), and δij =0 (i 6=j). A 2-cochain is represented
as f =

∑
i f

iχi, where f i(λi) 6= 0 gives the value of f on
λi, and f i(µ) = 0 elsewhere. The evaluation of a cochain f
over a chain λ is given by f(λ) := 〈λ, f〉 =

∑
λif

i, and is
the discrete prototype of domain integration.

3. EXTRACTION OF (CO)CHAINS FROM IMAGES

LAR takes advantage of the data-parallel many-core com-
putational model supported by the graphic processing units,
designed to rapidly manipulate memory to accelerate the
creation of images for output display. GPUs are present
in embedded systems, mobile phones, personal computers,
workstations, and game consoles. Of course, modern GPUs
are extremely efficient for producing computer graphics, and
their highly parallel structure is more effective than general-
purpose CPUs for algorithms where processing of large data
blocks may be performed in parallel.

Fig. 2. Since the bottleneck of GPGPU is moving data from
global to local memory, the extraction of model portions is
done in parallel using the same [∂3] matrix for a n3 subimage.

The extraction of a solid model from an image was imple-
mented using a divide-et-impera approach (see Figure 2). The
cell complex taken into account is a n3 set of image voxel,
with n ∈ {64, 128} depending on the size of the GPU stor-
age. The matrix [∂3] = [δ2]t of the (co)boundary operator de-
fined on the (co)chain complex supported by such subimage
is computed once and for all, and stored in GPU’s constant
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Fig. 3. (a) A random polygon in the unit circle; (b) the bound-
ary of the total chain, computed by a single SpMV multipli-
cation. The same [∂2] matrix is used to extract the boundary
of any polygon subset.

memory, so that the boundary models of several image por-
tions can be extracted in parallel, by sending to device’s work
groups a set of coordinate representations (proper strings of
bits) of the chains to be extracted. The coordinate representa-
tions of their boundaries are computed in parallel using local
memory to perform several parallel SpMV operations.

LAR is being developed [8] as a service in a web-based
computational environment, using some Khronos’s APIs for
industry standard heterogeneous computing. The power of
GPU to perform accelerated topological computation has
been capitalised via OpenCL, the open general-purpose GPU
computing language [9]. By accelerating the topological op-
erators we show the LAR native data-parallel nature and ver-
satility, further endorsed by the recent WebCL specification
(a way to use OpenCL through browser-based technologies)
exposed as a computational service to be accessed by clients
that do not have access to silicon accelerated solutions.

In particular, LAR is being used in biomedical applica-
tions which require fast performances with big geometric data
for topological tasks such as model extraction from 3D im-
ages (see Figure 4). Density values in medical images repre-
sent scalar fields (cochains) over cubical cellular complexes,
and LAR is used to guarantee topologically correct 3D image
segmentation as well as to extract (enumerative) solid model
from the image1, which is subsequently smoothed out (see
Figure 4). A nice feature of this approach is that the whole
image is partitioned into a set of cochains associated to field
intervals, including the interstitial space, so providing a well-
defined meshing of both the features and their outer space.

The main operation we have implemented [8] in OpenCL
is of course the SpMV multiplication, where three kernels are
run on a set of chain vectors to build the result of SpMV prod-
uct in CSR format: the first kernel computes the number of
non-zero elements per row; the second computes a prefix scan

1This work is carried out within the framework of the IEEE-SA Project
P3333.2 - Standard for “Three-Dimensional Model Creation Using Unpro-
cessed 3D Medical Data”.

on such elements. It is implemented via the prefix sum pro-
posed in [10], with local cache and blocks to divide the work
shares among work-items, in a divide-et-impera fashion; then
the partial results are merged and propagated globally. The
third kernel builds and returns the output of the operation.

Although being the core part of the LAR library, the
OpenCL kernels for SpMV and SpMM (sparse matrix-vector
and sparse matrix-matrix multiplication) are not the only
software components; to make them work smoothly, other
computations are needed on the host side, that must be able
to receive and manipulate the input, send it to the GPU, ver-
ify the execution state and return the output. Furthermore,
the library must be able to empower calculations either on
accelerated hosts or not. To achieve this goal, besides the
kernel modules, two different architectures have been de-
vised: a REST computational service and a pipelined single
host system. These architectures were implemented in differ-
ent languages (javascript, java and C++) and using (various
combination of) different technologies [8].

Fig. 4. The solid model of a sample of spongy bone extracted
from a 3D image (µNMR).

4. MAPPING IMAGES TO GEOMETRIC MODELS

We are currently working to the smoothing and transforma-
tion of the models extracted from images into discrete meshes
of quotient cochains, i.e. into a discrete set decomposition of
the mined models. The resulting output is a cell complex
with a strongly reduced number of cells, characterised by a
constant density of some physical quantity in each cell. The
goal of this mapping is to transform the extracted model from
a big collection of small simplices to a greatly reduced num-
ber of discrete cells with simple topology and possibly curved
boundaries. Notice that the output of the mining step, de-
scribed in the previous section, is either a big set of line inter-
sections between adjacent pixels for 2D images, or a big set of
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triangles defined by the intersection of adjacent voxels in the
3D case. In particular, we are making experiments with a set
of linear sparse matrix algorithms derived from the Taubin fil-
ter [11] and from the Morse-Smale topology decompositions
methods derived from [12].

5. APPLICATIONS

Space products like satellite imagery and global positioning
systems (GPS) are entered into common public everyday use.
Another space technology, GPR (ground penetrating radar or
undersurface radar), is now getting on the stage. In particular,
GPR was already used to map large archaeological sites and
ruins, and to study underground geologic formations, like
water reservoirs under the surface of Mars planet [13, 14].
The depth penetration of micro and radio waves is greater,
and their use is easier and more economic, than conventional
geological investigation methods. Some new technology, like
atomic dielectric resonance (ADS), already provides geo-
physical services for the location, identification, mapping,
and exploration of undersurface natural resources, without
relying upon interpretation or probability.

Even more promising than the previous generation of
satellite imagery of the Earth surface, scanning via remote
sensors the top layers of the planet crust is going to produce
very-large amounts of digital data, that can be employed
for a range of useful products and services to the public,
including integration of outdoor and indoor mapping, recon-
struction of 3D building models, discovery of archeological
sites, underground utility mapping, road and bridge inspec-
tion, monitoring and early-alarming of high-risk geological
areas, disaster prevention and recovery, geodynamical mod-
els, control of unauthorized construction, security operations
in densely built environments, and military operations.

In our view such a computational environment, enriched
with proper spatial indexing, will be able to efficiently man-
age huge cell decompositions of Earth crust parts of variable
depths, by integrating grids, maps and images with 3D static
and time-varying FEM meshes. E.g., geologists well under-
stand that fully 3D geodynamic models, incorporating hetero-
geneity in boundary conditions and lithospheric properties,
are required to describe more accurately the development of
collisional orogens [15].
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[3] Aydın Buluç and John R. Gilbert, “Parallel sparse matrix-
matrix multiplication and indexing: Implementation and ex-
periments,” SIAM Journal of Scientific Computing (SISC), vol.
34, no. 4, pp. 170 – 191, 2012.

[4] Allen Hatcher, Algebraic topology, Cambridge University
Press, 2002.

[5] Jean-Claude Hausmann, Mod Two Homology and Cohomol-
ogy, 2012, Book Project.

[6] Hassler Whitney, Geometric integration Theory, Dover, 1957.

[7] Anton Lokhmotov, “Implementing sparse matrix-vector prod-
uct in OpenCL,” in OpenCL tutorial, 6th Int. Conference on
High Performance and Embedded Architectures and Compil-
ers (HiPEAC’11), 2012.

[8] Francesco Furiani, “HPC acceleration of topological opera-
tors in the linear algebric representation,” M.S. thesis, Dept
of Computer Science and Automation, University Roma Tre,
Rome, 2013.

[9] Janusz Kowalik and Tadeusz Puźniakowsk, Using OpenCL:
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